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• MRV – Measuring, Reporting and Verification

• REDD+ - Reducing Emissions from Deforestation and Forest Degradation

• SOC – Soil Organic Carbon

• SOM – Soil Organic Matter

• SDGs – Sustainable Development Goals

• IPCC – Intergovernmental Panel on Climate Change

• DBH – Diameter at Breast Height

• FSI – Forest Survey of India

• NDVI – Normalized Difference Vegetation Index

• EVI – Enhanced Vegetation Index

• LAI – Leaf Area Index

• GIS – Geographic Information System

• LULC – Land Use Land Cover

• Ha – Hectare

• t Ha-1 Tonnes Per Hectare

• GHGs – Green House Gases

• SOCI – Soil Organic Carbon Index

• DEM – Digital Elevation Model 

• SEA – SouthEast Asia 

• MEA – Middle East Asia 

• MIT – Massachusetts Institute of Technology

• ADB – Asian Development Bank 
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In a practical application of geospatial technology, the forest standing 
biomass & carbon measuring, reporting and verification (MRV) structure to 
back the climate change mitigation policies, such as REDD+, needs estimates 
of forest standing biomass & carbon, by way of an effort to estimate 
emissions. 

A mixture of field inventory data and geospatial technology remains expected 
to provide that information. By connecting the satellite data sets and forest 
inventory data, we will develop the statistical models for total standing 
biomass & carbon estimation related to the satellite data spectral variability. 
We will estimate the total standing forest biomass & carbon stock of the entire 
study area. Also, the near real-time information of Soil Organic Carbon (SOC) 
is essential and crucial in the present context as it is the critical factor of soil 
organic matter (SOM).

It's one of the key suppliers to food production, extenuation and adaptation to 
the climate change context, and achieving the Sustainable Development Goals 
(SDGs). SOC plays a significant role in soil functions and food production 
systems. Also, in a natural process, the mineralisation of SOC will be a 
valuable basis for the emissions of greenhouse gases. 

Background



Altering the contents of the SOC will individually change the establishment of 
ecosystem facilities essential for crop production and disturb the soils’ ability 
to safeguard against environmental variations, as it helps in the regulations of 
the pliability of cropping systems against climate change. 

We will use geospatial technology and ground inventory data to develop the 
statistical data sets linking with different spectral band combinations and 
indices. It will estimate the total SOC patterns in the cropland areas of the 
entire study area. 



Ecological balance is key to the survival of living organisms while sustenance 
of natural resources and habitats is the key for maintaining ecological balance. 
Forests are critical components of our ecosystem and play a major role in 
offsetting excess carbon, through soil and biomass level sequestration. 

The ever-growing need for food (with a growing population), industrialisation, 
and urbanisation has led to significant deforestation, causing depletion in 
forest cover. This has resulted in a high negative impact on our climate (IPCC, 
2007a; Vitousek et al., 1997; Dadhwal et al., 2009) (Figure-1).

Forest Conservation and Carbon Assessment

Introduction

Figure-1: Trend of annual fossil fuel emissions
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Human-induced changes supplement greenhouse gases and change the 
earth’s atmosphere (IPCC, 2003; 2007a). Biomass is one of the essential 
indicators for understanding how forest ecosystems function and their role in 
terrestrial vegetation carbon pools and the global carbon cycle under climate 
change (Darke et al., 2002; Xiao et al., 1997). Recently, forest biomass-related 
studies have become highly significant globally due to growing concerns about 
global warming and the forest carbon credit system (Houghton, 1991; Dadhwal 
et al., 2009).

It is essential to monitor and map the forest area to reduce global warming 
and get timely information on the afforestation programs and bring more area 
under green cover. 

Setting the Context  
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At SatSure, we understand that direct measurement of forest biomass in the 
field could be a destructive method for assessing forest biomass. It is 
especially not economical in the case of old-growth forests, in the protected 
and restricted areas. This approach requires initial harvesting of entities over a 
varied range of size and girth classes to start a functional link between 
biomass and easily measurable plant parameters, such as diameter/ girth and 
height (Kale et al., 2004; Kale and Roy, 2012; Patil et al., 2012; Tiwari, 1994). 

Therefore, we recommend leveraging allometric equations that approximate 
biomass of the tree component, or the total biomass of a single standing tree, 
based on easily measured variables, such as diameter/girth at breast height 
(dbh) and the height of the tree (FSI, 1996) (Figure-2).  

SatSure's Commitment towards Sustainability

Figure- 2: Showing the carbon cycle and different tree parameters
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The non-destructive approach adopted by SatSure involves the application of 
component-wise equations for different species through the sampling of tree 
components, including bole, branch, twigs and leaves (Tiwari, 1994) 
(Figure-3). Recently, in many case studies globally, geospatial technology has 
been utilised for biomass and productivity estimation at local and regional 
levels. The biomass assessment solution has three key components: ground 
measurements, remote sensing and geographic information system (Lu, 
2005).

The vast arrays of earth observation systems have opened several 
opportunities for quick and consistent assessments for monitoring 
above-ground standing biomass and carbon pools. Recently, efforts have been 
made to ensure the complete utilisation of geospatial datasets to estimate 
standing forest biomass and carbon (Patil et al., 2012; Tiwari, 1994). 

SatSure's Monitoring and Reporting Solution

Figure- 3: Showing the non-destructive approach for standing biomass & carbon estimation
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The vegetation indices, e.g. NDVI, EVI, LAI, are proved to be a good indicator of 
canopy cover, which has been an excellent correlation to biomass and 
productivity (Patil et al., 2012; Prince and Goward, 1995). Using satellite data 
and field measurements, this approach primarily aims to estimate the biomass 
and carbon pools in the selected study area. The solution also entails spectral 
models to produce a geospatial distribution of forest biomass and carbon 
stock.
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i. Ground sampling is conducted for mapping vegetation cover type and
   density. A two-stage nested clustering approach is being followed to collect
   the in-situ data (Figure-4).

Technology Overview 

Figure- 4: The methodology followed for the standing biomass & carbon estimation
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ii. Sample plots of 0.1 ha are laid. A total of 0.1ha sampling intensity is covered
    in the selected study area within different forest types, topography or
    aspects.

iii. The biomass parameters such as dbh (cm) at 1.37 m above ground and 
    tree height (cm), compositions, density, percent canopy-covered are 
    recorded for each sampling unit. The vegetation indices, e.g. NDVI, EVI and 
    LAI, are proven to be a good indicator of canopy cover, which has been an 
    excellent correlation to biomass and productivity (Patil et al., 2012; Prince 
    and Goward,1995). Using satellite data and field measurements, this 
    approach primarily aims to estimate the biomass and carbon pools in the 
    selected study area. The solution also entails spectral models to produce a    
    geospatial distribution of forest biomass and carbon stock.

iv. A standard conventional non-destructive method is followed to estimate 
    biomass. This method involves the estimation of biomass of individual trees
    through allometric equations using dbh and height of the trees.  

v. The site and species-specific allometric equations are gathered (leveraging 
    available literature). 

vi. Biomass of each of the four components: bole, branch, twig and leaf, is 
    estimated using an allometric equation. The biomass of all trees within a 
    plot will be aggregated and total plot biomass is estimated. 

vii. High-resolution satellite data is used to create vector boxes around the 
    sampling sites in the GIS domain. These vector boxes are then overlaid on 
    the density map. 

viii. Visual interpretation of data within each vector box for mapping for 
    vegetation cover type/ land use and density is carried out using field points. 
    The proportionate area of each land use/ land cover occurring within the 
    vector boundary is obtained by getting the proposition between the areas 
    inhabited by the particular LULC classes within the location of the pixel 
    boundary in hectares.

ix. Classes such as water bodies and settlements are given zero weight. The 
    forested area is multiplied by respective biomass to obtain total biomass for
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     that type for that area. Subsequently, each land use/ land cover class's area 
     weight is multiplied by the corresponding biomass of the respective class. 
     Thus, biomass obtained for all the vegetation types belonging to different 
     forest type-wise density classes occurring within the vector boundary of the 
     pixel is summed up to get weighted biomass (t Ha1) within the respective 
     pixels. 

x. Spectral modelling is carried out to map biomass and up-scaling plot 
     observations into a regional scale by correlating it with the reflectance of 
     multi-season satellite data. Correlation coefficients are obtained for 
     biomass estimation as a function of satellite-derived parameters viz., red 
     and infrared reflectance and NDVI. In spectral modelling, multi-season 
     images are used to establish a correlation between area-weighted biomass 
     and satellite-derived parameters.

xi. The linear and nonlinear statistical models will be obtained to relate 
     biomass to the data from different bands and indices (Red, Infrared and 
     NDVI). The best fit model is selected based on high R2 values (also called 
     coefficient of determination) and their significance. The best-fit model 
     obtained estimates the biomass and carbon for the entire study area. 
     Carbon content in vegetation is taken as 47.5 per cent of the above-ground 
     biomass.
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Agriculture accounts for approximately 10% of all GHGs, and it is essential to 
estimate and note the carbon sequestration. Therefore, there is a need to 
adopt sustainable agricultural practices, which will also contribute to achieving 
SDGs.

Soil Organic Carbon (SOC) is vital for soil fertility and agricultural productivity 
(Lal, 2006; Reeves, 1997). Soil erosion causes a decline in SOC, resulting in 
economic losses due to decreased crop productivity (Lal, 2004; West and Post, 
2002). This creates an additional need to supplement degraded soils with 
chemical fertilisers (Pimentel et al., 1995), further adding input costs.

Carbon Sequestration Assessment of 
Agricultural Lands and Measuring 
Regenerative Carbon Potential

Introduction
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Setting the Context  

Figure -5: Steps showing the digital mapping and measuring of soil organic carbon

The influence of SOC on agricultural productivity has in part, driven interest in 
the development of digital soil mapping techniques (Bachofer et al., 2015; 
Chen et al., 2000; Dogan and Kılıç, 2013; Frazier and Cheng, 1989; Mishra et al., 
2009; Mulder et al., 2011). 

Digital soil mapping techniques use diffuse reflectance spectroscopy, which 
has been demonstrated to accurately and non-destructively relate spectral 
reflectance to soil properties (Figure-5)
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SatSure’s Solution -Carbon Assessment of Agricultural 
Lands and Measurement of Carbon Credits 

Figure -6: Step for estimation of soil organic carbon & nitrogen

Additionally, this initiative would support the climate sustainability agenda by 
improving the soil sequestration capability of agricultural land. As part of the 
proposed working model, SatSure uses digital soil mapping to qualitatively 
assess the degree of soil degradation in agricultural landscapes by 

SatSure aims at generating additional revenue streams for farmers through 
carbon credits. The SatSure solution also aims at helping farmers protect and 
nurture their resources through sustainable farming (figure-6).
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categorising the degradation into severity classes (Chikhaoui et al., 2005) and 
to quantitatively predict SOC concentrations (Chen et al., 2000; Gomez et al., 
2008; Frazier and Cheng, 1989; Rossel et al., 2006). Spectrographic analysis to 
digitally map soil characteristics has been used in precision agriculture 
because rapid, field-scale assessments of soil properties allow farmers to 
efficiently identify and treat soils in which nutrients are limited (Mulla, 2013).

Linear regression models developed from laboratory hyperspectral reflectance 
and chemical measurements of soil samples have often been used to calibrate 
spectral indices for predicting soil properties based on soil colour (Bachofer et 
al., 2015; Ben-Dor and Banin, 1995; Frazier and Cheng, 1989; Gomez et al., 
2008; Mulder et al., 2011; Nanni and Demattê, 2006).

Soil colour often varies due to SOC and soil moisture (Escadafal, 1993; Schulze 
et al., 1993). Soils with higher SOC concentrations are typically darker coloured 
and have lower spectral reflectance than soils with lower SOC content (Rossel 
et al., 2006). Similarly, increasing soil moisture causes soil to appear darker 
because the reflectance of incident radiation in the visible spectrum uniformly 
decreases with rising water (Nocita et al., 2013; Weidong et al., 2002). 

However, unlike reflectance changes due to SOC contents, the uniform 
decrease in reflectance across the visible wavelengths with increasing soil 
moisture indicates that the use of band ratios can remove the impact of soil 
moisture on spectral reflectance (Nocita et al., 2013; Stoner and Baumgardner, 
1981).
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i. SatSure uses the reflectance at 478, 546, and 659 nm for blue, green, and 
   red, respectively, which correspond to the centre wavelengths of the 
   Sentinel-2/ hyperspectral sensor. 

ii. Use universal indices for mapping the surface SOC (Thaler et al. 2019; 
   Gitelson et al. 2003; Rodriguez et al. 2006; Sims & Gamon 2002). 

iii. Use 10m/ 30m pixel resolution Sentinel-2/ hyperspectral satellite image.

iv. Within the field, we collect the soil samples to a depth of 15/ 30 cm (Liet al., 
     2018). The samples are sieved to <2 mm and ground to a powder, and the 
     depth-averaged SOC concentrations for the 15/ 30- cm profile is measured 
    (Li et al., 2018). We use the spectra radiometer, and the field surface spectra 
    are collected. 

v. The Sentinel-2/ hyperspectral images were acquired for the time when the 
    field was ploughed and lacked both crop residue and crop cover. 

vi. We use the SOCI to predict SOC within the field following the method, i.e., 
    using a subset of the measurements from the field to locally calibrate a 
    relationship between the SOCI and SOC and then use the local calibration to 
    predict measured SOC values. 

vii. SatSure’s soil moisture product is used to know the correlation between 
      both and understand the distribution of surface organic carbon.

Technology Overview 
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vii. The distribution of surface carbon is checked with respect to slope, aspect, 
   runoff, DEM, soil type, crop type, irrigation etc. and regenerative carbon 
   potential is measured in near real-time.
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